Character Formulas for q-Rook Monoid Algebras
نویسنده
چکیده
The q-rook monoid Rn(q) is a semisimple C(q)-algebra that specializes when q → 1 to C[Rn], where Rn is the monoid of n × n matrices with entries from {0, 1} and at most one nonzero entry in each row and column. We use a Schur-Weyl duality between Rn(q) and the quantum general linear group Uqgl(r ) to compute a Frobenius formula, in the ring of symmetric functions, for the irreducible characters of Rn(q). We then derive a recursive Murnaghan-Nakayama rule for these characters, and we use Robinson-Schensted-Knuth insertion to derive a Roichman rule for these characters. We also define a class of standard elements on which it is sufficient to compute characters. The results for Rn(q) specialize when q = 1 to analogous results for Rn .
منابع مشابه
Representation theory of q-rook monoid algebras
We show that, over an arbitrary field, q-rook monoid algebras are iterated inflations of Iwahori-Hecke algebras, and, in particular, are cellular. Furthermore we give an algebra decomposition which shows a q-rook monoid algebra is Morita equivalent to a direct sum of Iwahori-Hecke algebras. We state some of the consequences for the representation theory of q-rook monoid algebras.
متن کاملMöbius Functions and Semigroup Representation Theory Ii: Character Formulas and Multiplicities
We generalize the character formulas for multiplicities of irreducible constituents from group theory to semigroup theory using Rota’s theory of Möbius inversion. The technique works for a large class of semigroups including: inverse semigroups, semigroups with commuting idempotents, idempotent semigroups and semigroups with basic algebras. Using these tools we are able to give a complete descr...
متن کاملCombinatorial Gelfand models for some semigroups and q-rook monoid algebras
Inspired by the results of [APR], we propose combinatorial Gelfand models for semigroup algebras of some finite semigroups, which include the symmetric inverse semigroup, the dual symmetric inverse semigroup, the maximal factorizable subsemigroup in the dual symmetric inverse semigroup, and the factor power of the symmetric group. Furthermore we extend the Gelfand model for the semigroup algebr...
متن کاملGelfand Models for Diagram Algebras : extended abstract
A Gelfand model for a semisimple algebra A over C is a complex linear representation that contains each irreducible representation of A with multiplicity exactly one. We give a method of constructing these models that works uniformly for a large class of combinatorial diagram algebras including: the partition, Brauer, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, and planar rook monoid alg...
متن کاملq-rook monoid algebras, Hecke algebras, and Schur-Weyl duality
When we were at the beginnings of our careers Sergei’s support helped us to believe in our work. He generously encouraged us to publish our results on Brauer and Birman-Murakami-Wenzl algebras, results which had in part, or possibly in total, been obtained earlier by Sergei himself. He remains a great inspiration for us, both mathematically and in our memory of his kindness, modesty, generosity...
متن کامل